plans.datasets.chrono#
Handle chronological (time series) datasets.
Overview#
# todo [major docstring improvement] – overview Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Example#
# todo [major docstring improvement] – examples Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla mollis tincidunt erat eget iaculis. Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl.
import numpy as np
print("Hello World!")
Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl. Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl.
Classes
|
A class for representing and working with PET data. |
|
A class for representing and working with rainfall time series data. |
|
|
|
A class for representing and working with river stage time series data. |
|
|
|
A class for representing and working with streamflow time series data. |
|
A class for representing and working with temperature time series data. |
|
- class plans.datasets.chrono.RainSeries(name='MyRainfallSeries', alias=None)[source]#
Bases:
TimeSeries
A class for representing and working with rainfall time series data.
Notes
todo notes
Examples
todo examples
- __init__(name='MyRainfallSeries', alias=None)[source]#
Initialize the
DataSet
object.- Parameters:
name (str) – unique object name
alias (str) – unique object alias. If None, it takes the first and last characters from name
- interpolate_gaps(inplace=False, method=None)[source]#
Fills gaps in a time series using various interpolation methods.
- Parameters:
method (str) – Specifies the interpolation method. The default value is
linear
.constant (float) – The constant value used when the
constant
method is selected. Default value = 0.inplace (bool) – If True, modifies the original DataFrame in-place. Default value = False.
- Returns:
A new
pandas.DataFrame
with interpolated values if inplace is False, otherwise None.- Return type:
pandas.DataFrame
or None
Notes
This function handles time series data, standardizing it if necessary before performing interpolation. The process is applied to each unique epoch within the series.
linear
: linear interpolationnearest
: uses the value of the closest data point.zero
: fills gaps with zeros.constant
: fills gaps with a constant value provided in method parameterslinear
: first order spline interpolationquadratic
: second order spline interpolationcubic
: third order spline interpolation
- class plans.datasets.chrono.TemperatureSeries(name='MyTemperatureSeries', alias=None)[source]#
Bases:
TimeSeries
A class for representing and working with temperature time series data.
Notes
todo notes
Examples
todo examples
- class plans.datasets.chrono.ETSeries(name='MyETSeries', alias=None)[source]#
Bases:
TimeSeries
A class for representing and working with PET data.
Notes
todo notes
Examples
todo examples
- class plans.datasets.chrono.StageSeries(name='MyStageSeries', alias=None)[source]#
Bases:
TimeSeries
A class for representing and working with river stage time series data.
Notes
todo notes
Examples
todo examples
- class plans.datasets.chrono.StreamflowTimeSeries(name='MyFlowSeries', alias=None)[source]#
Bases:
TimeSeries
A class for representing and working with streamflow time series data.
Notes
todo notes
Examples
todo examples
- class plans.datasets.chrono.RainSeriesSamples(name='MyRSColection')[source]#
Bases:
TimeSeriesSpatialSamples
- __init__(name='MyRSColection')[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- class plans.datasets.chrono.TemperatureSeriesSamples(name='MyTempSColection')[source]#
Bases:
TimeSeriesSpatialSamples
- __init__(name='MyTempSColection')[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- class plans.datasets.chrono.StageSeriesCollection(name='MySSColection')[source]#
Bases:
TimeSeriesCluster
- __init__(name='MySSColection')[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- set_data(df_info, src_dir=None, filter_dates=None)[source]#
Set data for the time series collection from a info class:pandas.DataFrame.
- Parameters:
df_info (class:pandas.DataFrame) – class:pandas.DataFrame containing metadata information for the time series collection. This DataFrame is expected to have matching fields to the metadata keys.
src_dir (str) – Path for inputs directory in the case for only file names in
File
column.filter_dates (str) – List of Start and End dates for filter data
Notes
The
set_data
method populates the time series collection with data based on the provided DataFrame.It creates time series objects, loads data, and performs additional processing steps.
Adjust
skip_process
according to your data processing needs.
Examples
ts_collection.set_data(df, "path/to/data", filter_dates=["2020-01-01 00:00:00", "2020-03-12 00:00:00"])