plans.datasets.core#
Primitive classes for handling datasets.
Overview#
# todo [docstring] – overview Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Example#
# todo [docstring] – examples Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla mollis tincidunt erat eget iaculis. Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl.
import numpy as np
print("Hello World!")
Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl. Mauris gravida ex quam, in porttitor lacus lobortis vitae. In a lacinia nisl.
Functions
|
Utility function for dataframe pre-processing. |
|
Utility function to get a list of random colors |
Classes
|
A Quali-Hard is a hard-coded qualitative map (that is, the table is pre-set) todo [docstring] -- examples |
|
Basic qualitative raster map dataset. |
|
The raster collection base dataset. |
|
A |
|
The basic Raster map dataset. |
|
The raster collection base dataset. |
|
A |
|
|
|
|
|
The |
|
A collection of time series objects with associated metadata. |
|
The |
|
The |
|
Zones map dataset is a QualiRaster designed to handle large volume of positive integer numbers (ids of zones) todo [docstring] -- examples |
- plans.datasets.core.dataframe_prepro(dataframe)[source]#
Utility function for dataframe pre-processing.
- Parameters:
dataframe (
pandas.DataFrame
) – incoming dataframe- Returns:
prepared dataframe
- Return type:
pandas.DataFrame
- plans.datasets.core.get_colors(size=10, cmap='tab20', randomize=True)[source]#
Utility function to get a list of random colors
- Parameters:
size (int) – Size of list of colors
cmap (str) – Name of matplotlib color map (cmap)
- Returns:
list of random colors
- Return type:
list
- class plans.datasets.core.TimeSeries(name='MyTimeSeries', alias='TS0')[source]#
Bases:
Univar
- __init__(name='MyTimeSeries', alias='TS0')[source]#
Initialize the
DataSet
object.- Parameters:
name (str) – unique object name
alias (str) – unique object alias. If None, it takes the first and last characters from name
- _set_frequency()[source]#
Guess the datetime resolution of a time series based on the consistency of timestamp components (e.g., seconds, minutes).
Caution
This method infers the datetime frequency of the time series data based on the consistency of timestamp components.
- get_metadata()[source]#
Get a dictionary with object metadata. Expected to increment superior methods.
Note
Metadata does not necessarily inclue all object attributes.
- Returns:
dictionary with all metadata
- Return type:
dict
- update()[source]#
Update internal attributes based on the current data.
Notes
Calls the
set_frequency
method to update the datetime frequency attribute.Updates the
start
attribute with the minimum datetime value in the data.Updates the
end
attribute with the maximum datetime value in the data.Updates the
var_min
attribute with the minimum value of the variable field in the data.Updates the
var_max
attribute with the maximum value of the variable field in the data.Updates the
data_size
attribute with the length of the data.
- setter(dict_setter, load_data=True)[source]#
Set selected attributes based on an incoming dictionary. Expected to increment superior methods.
- Parameters:
dict_setter (dict) – incoming dictionary with attribute values
load_data (bool) – option for loading data from incoming file. Default is True.
- set_data(input_df, input_dtfield, input_varfield, filter_dates=None, dropnan=True)[source]#
Set time series data from an inputs DataFrame.
- Parameters:
input_df (
pandas.DataFrame
) – Input DataFrame containing time series data.input_dtfield (str) – Name of the datetime field in the inputs DataFrame.
input_varfield (str) – Name of the variable field in the inputs DataFrame.
filter_dates – List of [Start, End] used for filtering date range.
dropnan (bool) – If True, drop NaN values from the DataFrame. Default is True.
Notes
Assumes the inputs DataFrame has a datetime column in the format “YYYY-mm-DD HH:MM:SS”.
Renames columns to standard format (datetime:
self.dtfield
, variable:self.varfield
).Converts the datetime column to standard format.
- load_data(file_data, input_dtfield=None, input_varfield=None, in_sep=';', filter_dates=None)[source]#
Load data from file. Expected to overwrite superior methods.
- Parameters:
file_data (str) – Absolute Path to the
csv
inputs file.input_varfield (str) – Name of the incoming varfield.
input_dtfield (str) – Name of the incoming datetime field. Default is “datetime”.
sep (list) – String separator. Default is
;
.filter_dates – List of start and end date to filter. Default is None
Notes
Assumes the inputs file is in
csv
format.Expects a datetime column in the format
YYYY-mm-DD HH:MM:SS
.
- cut_edges(inplace=False)[source]#
Cut off initial and final NaN records in a given time series.
- Parameters:
inplace (bool) – If True, the operation will be performed in-place, and the original data will be modified. If False, a new DataFrame with cut edges will be returned, and the original data will remain unchanged. Default is False.
- Returns:
If inplace is False, a new DataFrame with cut edges. If inplace is True, returns None, and the original data is modified in-place.
- Return type:
pandas.DataFrame``
or None
Notes
This function removes leading and trailing rows with NaN values in the specified variable field.
The operation is performed on a copy of the original data, and the original data remains unchanged.
- standardize()[source]#
Standardize the data based on regular datetime steps and the time resolution.
Notes
Creates a full date range with the expected frequency for the standardization period.
Groups the data by epochs (based on the frequency and datetime field), applies the specified aggregation function, and fills in missing values with left merges.
Updates internal attributes, including
self.isstandard
to indicate that the data has been standardized.
Warning
The
standardize
method modifies the internal data representation. Ensure to review the data after standardization.
- clear_outliers(inplace=False)[source]#
Clears outlier values from the specified variable field in the DataFrame.
- Parameters:
inplace (if inplace is True, otherwise the DataFrame with outliers cleared.) – If True, the operation is performed in-place, modifying the DataFrame directly. If False, a new DataFrame with outliers removed is returned. Default value = False
- Return type:
pandas.DataFrame
or None
- get_epochs(inplace=False)[source]#
Get Epochs (periods) for continuous time series (0 = gap epoch).
- Parameters:
inplace (bool) – Option to set Epochs inplace. Default is False.
- Returns:
A DataFrame if inplace is False or None.
- Return type:
pandas.DataFrame`
, None
Notes
This function labels continuous chunks of data as Epochs, with Epoch 0 representing gaps in the time series.
- update_epochs_stats()[source]#
Update all epochs statistics.
Notes
This function updates statistics for all epochs in the time series.
Ensures that the data is standardized by calling the
standardize
method if it’s not already standardized.Removes epoch 0 from the statistics since it typically represents non-standardized or invalid data.
Groups the data by
Epoch_Id
and calculates statistics such as count, start, and end timestamps for each epoch.Generates random colors for each epoch using the
get_random_colors
function with a specified colormap (cmap` attribute).Includes the time series name in the statistics for identification.
Organizes the statistics DataFrame to include relevant columns:
Name
,Epoch_Id
,Count
,Start
,End
, andColor
.Updates the attribute
epochs_n
with the number of epochs in the statistics.
Examples
todo [examples]
- interpolate_gaps(method='linear', constant=0, inplace=False)[source]#
Fills gaps in a time series using various interpolation methods.
- Parameters:
method (str) – Specifies the interpolation method. The default value is
linear
.constant (float) – The constant value used when the
constant
method is selected. Default value = 0.inplace (bool) – If True, modifies the original DataFrame in-place. Default value = False.
- Returns:
A new
pandas.DataFrame
with interpolated values if inplace is False, otherwise None.- Return type:
pandas.DataFrame
or None
Notes
This function handles time series data, standardizing it if necessary before performing interpolation. The process is applied to each unique epoch within the series.
linear
: linear interpolationnearest
: uses the value of the closest data point.zero
: fills gaps with zeros.constant
: fills gaps with a constant value provided in method parameterslinear
: first order spline interpolationquadratic
: second order spline interpolationcubic
: third order spline interpolation
- aggregate(freq, bad_max, agg_funcs=None)[source]#
Aggregate the time series data based on a specified frequency using various aggregation functions.
- Parameters:
freq (str) – Pandas-like alias frequency at which to aggregate the time series data.
bad_max (int) – The maximum number of
Bad
records allowed in a time window for aggregation. Records with moreBad
entries will be excluded from the aggregated result. Default is 7.agg_funcs (dict) – A dictionary specifying customized aggregation functions for each variable. Default is None, which uses standard aggregation functions (sum, mean, median, min, max, std, var, percentiles).
- Returns:
A new pandas.DataFrame with aggregated values based on the specified frequency.
- Return type:
pandas.DataFrame
Notes
Resamples the time series data to the specified frequency using Pandas-like alias strings. Aggregates the values using the specified aggregation functions. Counts the number of
Bad
records in each time window and excludes time windows with moreBad
entries than the specified threshold.- Common options include:
h
for hourly frequencyD
for daily frequencyW
for weekly frequencyMS
for monthly/start frequencyQS
for quarterly/start frequencyYS
for yearly/start frequency
More options and details can be found in the Pandas documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases.
- upscale(freq, bad_max, inplace=True)[source]#
Upscale time series for larger time steps. This method uses the agg attribute. See the aggregate method.
- Parameters:
freq (str) – Pandas-like alias frequency at which to aggregate the time series data. Common options include: -
h
for hourly frequency -D
for daily frequency -W
for weekly frequency -MS
for monthly/start frequency -QS
for quarterly/start frequency -YS
for yearly/start frequency More options and details can be found in the Pandas documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases.bad_max (int) – The maximum number of
Bad
records allowed in a time window for aggregation. Records with moreBad
entries will be excluded from the aggregated result.inplace (bool) – option for overwrite data, default True
- downscale(freq)[source]#
Donwscale time series for smaller time steps using linear inteporlation.
- Parameters:
freq (str) – new time step frequency
- Returns:
Dataframe of downscaled data
- Return type:
pandas.DataFrame
- assess_extreme_values(eva_freq='YS', eva_agg='max')[source]#
Run Extreme Values Analysis (EVA) over the Time Series and set the
eva
attribute- Parameters:
eva_freq (str) – standard pandas frequency alias for upscaling data
eva_agg (str) – standard pandas aggregation alias for upscaling (expected:
max
ormin
)
- view_epochs(show=True)[source]#
Get a basic visualization. Expected to overwrite superior methods.
- Parameters:
show (bool) – option for showing instead of saving.
Notes
Uses values in the
view_specs()
attribute for plotting
- view(show=True, return_fig=False, minimal_dates=False, include_eva=False)[source]#
Get a basic visualization.
- Parameters:
show (bool) – option for showing instead of saving.
return_fig (bool) – option for returning the figure object itself.
minimal_dates (bool or file path to figure or str) – option for setting minimal dates layout in x-axis.
Note
Use values in the
view_specs()
attribute for plotting
- class plans.datasets.core.TimeSeriesCollection(name='myTSCollection', base_object=None)[source]#
Bases:
Collection
A collection of time series objects with associated metadata.
The
TimeSeriesCollection
or simplyTSC
class extends theCollection
class and is designed to handle time series data. It can be miscellaneous datasets.Note
See
TimeSeriesCluster
for managing time series of the same variable- __init__(name='myTSCollection', base_object=None)[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- update(details=False)[source]#
Update the time series collection.
- Parameters:
details (bool) – bool, optional If True, update additional details. Default is False.
Examples
- load_data(table_file, filter_dates=None)[source]#
Load data from table file (information table) into the time series collection.
- Parameters:
table_file (str) –
str Path to file. Expected to be a
csv
table.todo place this in IO files docs Required columns:
Id
: int, required. Unique number id.Name
: str, required. Simple name.Alias
: str, required. Short nickname.X
: float, required. Longitude in WGS 84 Datum (EPSG4326).Y
: float, required. Latitude in WGS 84 Datum (EPSG4326).Code
: str, required.Source
: str, required.Description
: str, required.Color
: str, required.Units
or<Varname>_Units
: str, required. Units of data.VarField``or ``<Varname>_VarField
: str, required. Variable column in data file.DtField``or ``<Varname>_DtField
: str, required. Date-time column in data fileFile``or ``<Varname>_File
: str, required. Name or path to data time seriescsv
file.
Ex**Examples
- set_data(df_info, src_dir=None, filter_dates=None)[source]#
Set data for the time series collection from a info class:pandas.DataFrame.
- Parameters:
df_info (class:pandas.DataFrame) – class:pandas.DataFrame containing metadata information for the time series collection. This DataFrame is expected to have matching fields to the metadata keys.
src_dir (str) – Path for inputs directory in the case for only file names in
File
column.filter_dates (str) – List of Start and End dates for filter data
Notes
The
set_data
method populates the time series collection with data based on the provided DataFrame.It creates time series objects, loads data, and performs additional processing steps.
Adjust
skip_process
according to your data processing needs.
Examples
ts_collection.set_data(df, "path/to/data", filter_dates=["2020-01-01 00:00:00", "2020-03-12 00:00:00"])
- clear_outliers()[source]#
Clear outliers in the collection based on the
datarange_min
anddatarange_max
attributes.
- merge_data()[source]#
Merge data from multiple sources into a single DataFrame.
- Returns:
DataFrame A merged DataFrame with datetime and variable fields from different sources.
- Return type:
pandas.DataFrame
Notes - Updates the catalog details. - Merges data from different sources based on the specified datetime field and variable field. - The merged DataFrame includes a date range covering the entire period.
- standardize()[source]#
Standardize the time series data.
This method standardizes all time series objects in the collection.
Notes
The method iterates through each time series in the collection and standardizes it.
After standardizing individual time series, the data is merged.
The merged data is then reset for each individual time series in the collection.
Epoch statistics are updated for each time series after the reset.
Finally, the collection catalog is updated with details.
Examples
- merge_local_epochs()[source]#
Merge local epochs statistics from individual time series within the collection.
- Returns:
Merged
pandas.DataFrame``
containing epochs statistics.- Return type:
pandas.DataFrame
Notes
This method creates an empty list to store individual epochs statistics dataframes.
It iterates through each time series in the collection.
For each time series, it updates the local epochs statistics using the :meth:
update_epochs_stats
method.The local epochs statistics dataframes are then appended to the list.
Finally, the list of dataframes is concatenated into a single dataframe.
Examples
ts_collection = TimeSeriesCollection() merged_epochs = ts_collection.merge_local_epochs()
- get_epochs()[source]#
Calculate epochs for the time series data.
- Returns:
DataFrame with epochs information.
- Return type:
pandas.DataFrame
Notes
This method merges the time series data to create a working DataFrame.
It creates a copy of the DataFrame for NaN-value calculation.
Converts non-NaN values to 1 and NaN values to 0.
Calculates the sum of non-NaN values for each row and updates the DataFrame with the result.
Extracts relevant columns for epoch calculation.
Sets 0 values in the specified
overfield
column to NaN.Creates a new
TimeSeries`
instance for epoch calculation using theoverfield
values.Calculates epochs using the :meth:
get_epochs
method of the newTimeSeries`
instance.Updates the original DataFrame with the calculated epochs.
Examples
epochs_data = ts_instance.get_epochs()
- view(show=True, folder='./output', filename=None, dpi=300, fig_format='jpg', suff='', usealias=False)[source]#
Visualize the time series collection.
- Parameters:
show (bool) – bool, optional If True, the plot will be displayed interactively. If False, the plot will be saved to a file. Default is True.
folder (str) – str, optional The folder where the plot file will be saved. Used only if show is False. Default is “./output”.
filename (str or None) – str, optional The base name of the plot file. Used only if show is False. If None, a default filename is generated. Default is None.
dpi (int) – int, optional The dots per inch (resolution) of the plot file. Used only if show is False. Default is 300.
fig_format (str) – str, optional The format of the plot file. Used only if show is False. Default is “jpg”.
usealias – bool, optional Option for using the Alias instead of Name in the plot. Default is False.
Notes
This function generates a scatter plot with colored epochs based on the epochs’ start and end times. The plot includes data points within each epoch, and each epoch is labeled with its corresponding ID.
Examples
- export_views(folder, dpi=300, fig_format='jpg', suff='', skip_main=False, raw=False)[source]#
Export views of time series data and individual time series within the collection.
- Parameters:
folder (str) – str The folder path where the views will be exported.
dpi (int) – int, optional Dots per inch (resolution) for the exported images, default is 300.
fig_format (str) – str, optional Format for the exported figures, default is “jpg”.
suff (str) – str, optional Suffix to be appended to the exported file names, default is an empty string.
skip_main (bool) – bool, optional Option for skipping the main plot (pannel)
raw (str) – bool, optional Option for considering a raw data series. No epochs analysis. Default is False.
Notes
Updates the collection details and epoch statistics.
Calls the
view
method for the entire collection and individual time series with specified parameters.Sets view specifications for individual time series, such as y-axis limits and time range.
Examples
tscoll.export_views(folder=”/path/to/export”, dpi=300, fig_format=”jpg”, suff=”_views”)
- class plans.datasets.core.TimeSeriesCluster(name='myTimeSeriesCluster', base_object=None)[source]#
Bases:
TimeSeriesCollection
The
TimeSeriesCluster
instance is desgined for holding a collection of same variable time series. That is, no miscellaneus data is allowed.- __init__(name='myTimeSeriesCluster', base_object=None)[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- class plans.datasets.core.TimeSeriesSamples(name='myTimeSeriesSamples', base_object=None)[source]#
Bases:
TimeSeriesCluster
The
TimeSeriesSamples
instance is desgined for holding a collection of same variable time series arising from the same underlying process. This means that all elements in the collection are statistical data.This instance allows for the
reducer()
method.- __init__(name='myTimeSeriesSamples', base_object=None)[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- class plans.datasets.core.TimeSeriesSpatialSamples(name='myTimeSeriesSpatialSample', base_object=None)[source]#
Bases:
TimeSeriesSamples
The
TimeSeriesSpatialSamples
instance is desgined for holding a collection of same variable time series arising from the same underlying process in space. This means that all elements in the collection are statistical data in space.This instance allows for the
regionalize()
method.- __init__(name='myTimeSeriesSpatialSample', base_object=None)[source]#
Deploy the time series collection data structure.
- Parameters:
name (str) – Name of the time series collection. Default is “myTSCollection”.
base_object (TimeSeries or None) – Base object for the time series collection. If None, a default TimeSeries object is created. Default is None.
Notes
If
base_object
is not provided, a defaultTimeSeries
object is created.
- regionalize(method='average')[source]#
Regionalize the time series data using a specified method.
- Parameters:
method (str) – str, optional Method for regionalization, default is “average”.
Notes
This method handles standardization. If the time series data is not standardized, it applies standardization.
Computes epochs for the time series data.
Iterates through each time series in the collection and performs regionalization.
For each time series, sets up source and destination vectors, computes weights, and calculates regionalized values.
Updates the destination column in-place with the regionalized values and updates epochs statistics.
Updates the collection catalog with details.
- class plans.datasets.core.Raster(name='myRasterMap', alias='Rst', dtype='float32')[source]#
Bases:
DataSet
The basic Raster map dataset.
- __init__(name='myRasterMap', alias='Rst', dtype='float32')[source]#
Deploy a basic raster map object.
- Parameters:
name (str) – Map name, defaults to “myRasterMap”
dtype (str) – Data type of raster cells. Options: byte, uint8, int16, int32, float32, etc., defaults to “float32”
- get_metadata()[source]#
Get a dictionary with object metadata. Expected to increment superior methods.
Note
Metadata does not necessarily inclue all object attributes.
- Returns:
dictionary with all metadata
- Return type:
dict
- update()[source]#
Refresh all mutable attributes based on data (includins paths). Expected to be incremented downstream.
- set_data(grid)[source]#
Set the data grid for the raster object. This function allows setting the data grid for the raster object. The incoming grid should be a NumPy array.
- Parameters:
grid (
numpy.ndarray
) – The data grid to be set for the raster.
Notes
The function overwrites the existing data grid in the raster object with the incoming grid, ensuring that the data type matches the raster’s dtype.
Nodata values are masked after setting the grid.
- set_raster_metadata(metadata)[source]#
Set metadata for the raster object based on incoming metadata. This function allows setting metadata for the raster object from an incoming metadata dictionary. The metadata should include information such as the number of columns, number of rows, corner coordinates, cell size, and nodata value.
- Parameters:
metadata (dict) – A dictionary containing metadata for the raster.
- load_data(file_data, file_prj=None, id_band=1)[source]#
Load data and metadata from files to the Raster object.
- Parameters:
file_data (str) – The path to the raster file.
file_prj (str) – The path to the ‘.prj’ projection file. If not provided, an attempt is made to use the same path and name as the
.asc
file with the ‘.prj’ extension.id_band (int) – Band id to read for GeoTIFF. Default value = 1
- load_metadata(file_data)[source]#
Load only metadata from files to the raster object.
- Parameters:
file_data (str) – The path to the raster file.
- load_image(file_input, xxl=False)[source]#
Load data from an image ‘.tif’ raster files.
- Parameters:
file_input (str) – The file path of the ‘.tif’ raster file.
xxl (bool) – option flag for very large images
Notes
The function uses the Pillow (PIL) library to open the ‘.tif’ file and converts it to a NumPy array.
Metadata may need to be provided separately, as this function focuses on loading raster data.
The loaded data grid is set using the
set_grid
method of the raster object.
- load_tif(file_input, id_band=1)[source]#
Load data and metadata from .tif raster file.
- Parameters:
file_input (str) – The file path to the
.tif
raster file.
- load_tif_metadata(file_input, id_band=1)[source]#
Load only metadata from .tif raster file.
- Parameters:
file_input (str) – The file path to the
.tif
raster file.
- load_asc(file_input)[source]#
Load data and metadata from .asc raster file.
- Parameters:
file_input (str) – The file path to the
.asc
raster file.
- load_asc_metadata(file_input)[source]#
Load only metadata from
.asc
raster files.- Parameters:
file_input (str) – The file path to the
.asc
raster file.
- load_prj(file_input)[source]#
Load ‘.prj’ auxiliary file to the ‘prj’ attribute.
- Parameters:
file_input (str) – The file path to the ‘.prj’ auxiliary file.
- copy_structure(raster_ref, n_nodatavalue=None)[source]#
Copy structure (metadata and prj) from another raster object.
- Parameters:
raster_ref (
datasets.Raster
) – The reference incoming raster object from which to copy.n_nodatavalue (float) – The new nodata value for different raster objects. If None, the nodata value remains unchanged.
- export(folder, filename=None, mode='tif')[source]#
Exports the raster to a specified file format and location.
- Parameters:
folder (str) – The destination folder for the exported file.
filename (str) – [optional] The name of the output file. If None, the original raster name is used.
mode (str) – The export format, either “tif” (default) or “asc”. Default value = “tif”
- export_tif(folder, filename=None)[source]#
Export an
.tif
raster file..- Parameters:
folder (str) – The directory path to export the raster file.
filename (str) – The name of the exported file without extension. If None, the name of the raster object is used.
- Returns:
The full file name (path and extension) of the exported raster file.
- Return type:
str
- export_asc(folder, filename=None)[source]#
Export an
.asc
raster file.- Parameters:
folder (str) – The directory path to export the raster file.
filename (str) – The name of the exported file without extension. If None, the name of the raster object is used.
- Returns:
The full file name (path and extension) of the exported raster file.
- Return type:
str
- export_prj(folder, filename=None)[source]#
Export a ‘.prj’ file. This function exports the coordinate system information to a ‘.prj’ file in the specified folder.
- Parameters:
folder (str) – The directory path to export the ‘.prj’ file.
filename (str) – The name of the exported file without extension. If None, the name of the raster object is used.
- Returns:
The full file name (path and extension) of the exported ‘.prj’ file, or None if no coordinate system information is available.
- Return type:
str or None
- reset_nodata(new_nodata, ensure=True)[source]#
Resets the no-data value in the raster metadata and updates the data mask accordingly.
This method first ensures the current no-data values are masked, then updates the NODATA_value in the raster metadata, and finally re-applies the mask based on the new no-data value.
- Parameters:
new_nodata (int or float) – The new no-data value to set.
ensure (bool) – If True, ensures the current no-data values are masked before resetting. Default value = True
- mask_nodata()[source]#
Mask grid cells as NaN where data is NODATA.
Notes
The function masks grid cells as NaN where the data is equal to the specified NODATA value.
If NODATA value is not set, no masking is performed.
- __insert_nodata()#
Set grid cells as NODATA where data is NaN.
- rebase_grid(base_raster, inplace=False, method='linear_model')[source]#
Rebase the grid of a raster. This function creates a new grid based on a provided reference raster. Both rasters are expected to be in the same coordinate system and have overlapping bounding boxes.
- Parameters:
base_raster (
datasets.Raster
) – The reference raster used for rebase. It should be in the same coordinate system and have overlapping bounding boxes.inplace (bool) – If True, the rebase operation will be performed in-place, and the original raster’s grid will be modified. If False, a new rebased grid will be returned, and the original data will remain unchanged. Default is False.
method (str) – Interpolation method for rebasing the grid. Options include “linear_model,” “nearest,” and “cubic.” Default is “linear_model.”
- Returns:
If inplace is False, a new rebased grid as a NumPy array. If inplace is True, returns None, and the original raster’s grid is modified in-place.
- Return type:
numpy.ndarray`
or None
Notes
The rebase operation involves interpolating the values of the original grid to align with the reference raster’s grid.
The method parameter specifies the interpolation method and can be “linear_model,” “nearest,” or “cubic.”
The rebase assumes that both rasters are in the same coordinate system and have overlapping bounding boxes.
- load_aoi_mask(file_raster, inplace=False)[source]#
Loads an Area of Interest (AOI) mask from a raster file and applies it to the current object’s data.
- Parameters:
file_raster (str) – The file path to the AOI raster.
inplace (bool) – If True, the mask is applied in-place to the current object’s data. Default value = False
- apply_aoi_mask(grid_aoi, inplace=False)[source]#
Apply AOI (area of interest) mask to the raster map. This function applies an AOI (area of interest) mask to the raster map, replacing values outside the AOI with the NODATA value.
Notes The function replaces values outside the AOI (where grid_aoi is 0) with the NODATA value. If NODATA value is not set, no replacement is performed. If inplace is True, the main grid is modified. If False, a backup of the grid is created before modification. This function is useful for focusing analysis or visualization on a specific area within the raster map.
- Parameters:
grid_aoi (
numpy.ndarray
) – Map of AOI (masked array or pseudo-boolean). Expected to have the same grid shape as the raster.inplace (bool) – If True, overwrite the main grid with the masked values. If False, create a backup and modify a copy of the grid. Default is False.
- release_aoi_mask()[source]#
Release AOI mask from the main grid. Backup grid is restored.
This function releases the AOI (area of interest) mask from the main grid, restoring the original values from the backup grid.
Notes If an AOI mask has been applied, this function restores the original values to the main grid from the backup grid. If no AOI mask has been applied, the function has no effect. After releasing the AOI mask, the backup grid is set to None, and the raster object is no longer considered to have an AOI mask.
- cut_edges(upper, lower, inplace=False)[source]#
Cutoff upper and lower values of the raster grid.
Notes Values in the raster grid below the lower value are set to the lower value. Values in the raster grid above the upper value are set to the upper value. If inplace is False, a processed copy of the grid is returned, leaving the original grid unchanged. This function is useful for clipping extreme values in the raster grid.
- Parameters:
upper (float or int) – The upper value for the cutoff.
lower (float or int) – The lower value for the cutoff.
inplace (bool) – If True, modify the main grid in-place. If False, create a processed copy of the grid. Default is False.
- Returns:
The processed grid if inplace is False. If inplace is True, returns None.
- Return type:
Union[None, np.ndarray]
- get_bbox()[source]#
Get the Bounding Box of the map.
- Returns:
Dictionary of xmin, xmax, ymin, and ymax. - “xmin” (float): Minimum x-coordinate. - “xmax” (float): Maximum x-coordinate. - “ymin” (float): Minimum y-coordinate. - “ymax” (float): Maximum y-coordinate.
- Return type:
dict
- get_extent()[source]#
Get the Extent of the map. See get_bbox.
- Returns:
list of [xmin, xmax, ymin, ymax]
- Return type:
list
- get_grid_datapoints(drop_nan=False)[source]#
Get flat and cleared grid data points (x, y, and z).
Notes This function extracts coordinates (x, y, and z) from the raster grid. The x and y coordinates are determined based on the grid cell center positions. If drop_nan is True, nan values are ignored in the resulting DataFrame. The resulting DataFrame includes columns for x, y, z, i, and j coordinates.
- Parameters:
drop_nan (bool) – Option to ignore nan values.
- Returns:
DataFrame of x, y, and z fields.
- Return type:
pandas.DataFrame``
or None. If the grid is None, returns None.
- get_grid_data()[source]#
Get flat and cleared grid values.
- Returns:
1D vector of cleared sample.
- Return type:
numpy.ndarray`
or None. If the grid is None, returns None.
Notes
This function extracts and flattens the grid, removing any masked or NaN values.
For integer grids, the masked values are ignored.
For floating-point grids, both masked and NaN values are ignored.
- get_univar()[source]#
Creates and returns a Univar object initialized with the current object’s grid data.
- Returns:
A Univar object containing the grid data for univariate analysis.
- Return type:
- get_grid_stats()[source]#
Get basic statistics from flat and cleared grid.
- Returns:
DataFrame of basic statistics. If the grid is None, returns None.
- Return type:
pandas.DataFrame``
or None
- get_aoi(by_value_lo, by_value_hi)[source]#
Get the AOI map from an interval of values (values are expected to exist in the raster).
- Parameters:
by_value_lo (float) – Number for the lower bound (inclusive).
by_value_hi (float) – Number for the upper bound (inclusive).
- Returns:
AOI map.
- Return type:
AOI`
object
Notes
This function creates an AOI (Area of Interest) map based on a specified value range.
The AOI map is constructed as a binary grid where values within the specified range are set to 1, and others to 0.
- _plot(fig, gs, specs)[source]#
Generates a plot visualizing the Raster data.
- Parameters:
fig (
matplotlib.figure.Figure
) – The matplotlib figure object.gs (
matplotlib.gridspec.GridSpec
) – The matplotlib gridspec object for arranging subplots.specs (dict) – A dictionary containing plotting specifications and options.
- Returns:
The modified matplotlib figure object with the plots.
- Return type:
matplotlib.figure.Figure
- view(show=True, return_fig=False, helper_geometry=None)[source]#
Displays or returns a visualization of the spatial data.
- Parameters:
show (bool) – If True, the plot is displayed. Default value = True
return_fig (bool) – If True, the matplotlib figure object is returned. Default value = False
helper_geometry (object) – [optional] An optional geometry object to overlay on the map.
- Returns:
The matplotlib figure object if return_fig is True, otherwise None.
- Return type:
matplotlib.figure.Figure
or None
- static plot_metadata(fig, metadata, x=0.0, y=0.1)[source]#
Adds raster metadata as text annotations to a matplotlib figure.
- Parameters:
fig (
matplotlib.figure.Figure
) – The matplotlib figure object to which metadata will be added.metadata (dict) – A dictionary containing raster metadata (e.g., ‘nrows’, ‘ncols’, ‘cellsize’, ‘xllcorner’, ‘yllcorner’, ‘NODATA_value’).
x (float) – The x-coordinate (figure fraction) for the left-most column of metadata. Default value = 0.0
y (float) – The y-coordinate (figure fraction) for the top row of metadata. Default value = 0.1
- Returns:
The modified matplotlib figure object.
- Return type:
matplotlib.figure.Figure
- static read_tif_metadata(file_input, n_band=1)[source]#
Read raster metadata from a file.
- Parameters:
file_input (str) – Path to the input raster file.
n_band (int) – [optional] Band number to read. Default value = 1
- Returns:
Dictionary containing raster metadata.
- Return type:
dict
- static read_tif(file_input, dtype='float', id_band=1, metadata=True)[source]#
Read a raster band from a file.
- Parameters:
file_input (str) – Path to the input raster file.
dtype (str) – Data type for the output grid. Default value = “float”
id_band (int) – Band id to read. Default value = 1
metadata (bool) – Whether to include metadata in the output dictionary. Default value = True
- Returns:
Dictionary containing the raster grid and optionally its metadata.
- Return type:
dict
- static write_tif(grid_output, dc_metadata, file_output, dtype='float32', n_bands=1, id_band=1)[source]#
Write a raster band to a file.
- Parameters:
grid_output (
numpy.ndarray
) – The grid data to write.dc_metadata (dict) – Dictionary containing the raster metadata.
file_output (str) – Path to the output raster file.
dtype (str) – Data type alias for the output grid (numpy standard). Default value = “float32”
n_bands (int) – Number of bands in the output raster. Default value = 1
id_band (int) – Band ID to write the data to. Default value = 1
- Returns:
Path to the output raster file. (echo)
- Return type:
str
- static read_asc_metadata(file_input)[source]#
Reads metadata from an ASCII raster file.
- Parameters:
file_input (str) – Path to the input ASCII file.
- Returns:
A dictionary containing the metadata.
- Return type:
dict
- static read_asc(file_input, dtype='float32', metadata=True)[source]#
Reads an ASCII raster file into a dictionary.
- Parameters:
file_input (str) – Path to the input ASCII file.
dtype (str) – Data type for the raster data. Default value = “float32”
metadata (bool) – Whether to read and include metadata from the ASCII file. Default value = True
- Returns:
A dictionary containing the raster data and optionally its metadata.
- Return type:
dict
- static write_asc(grid_output, dc_metadata, file_output, dtype='float32')[source]#
Writes a raster grid and its metadata to an ASCII file.
- Parameters:
grid_output (
numpy.ndarray
) – The raster data to write.dc_metadata (dict) – Dictionary containing the metadata for the ASCII file.
file_output (str) – Path for the output ASCII file.
dtype (str) – Data type for the raster data in the output file. Default value = “float32”
- Returns:
The path of the generated output ASCII file.
- Return type:
str
- static apply_nodata(grid_input, nodatavalue=None)[source]#
Applies a nodata value to the input grid.
- Parameters:
grid_input (
numpy.ndarray
) – The input grid.nodatavalue (int or float) – [optional] The nodata value to apply. Default value = None
- Returns:
The grid with the nodata value applied.
- Return type:
numpy.ndarray
- static make_square(grid_input)[source]#
Reshapes a 2D input grid into a square array, padding with NaNs or masked values if necessary.
- Parameters:
grid_input (
numpy.ndarray
) – The input 2D array (grid).- Returns:
A square array containing the original grid, padded with NaNs or masked values.
- Return type:
numpy.ndarray
- class plans.datasets.core.SciRaster(name='MySciRaster', alias=None)[source]#
Bases:
Raster
- __init__(name='MySciRaster', alias=None)[source]#
Initializes a new instance of the SciRaster class.
- Parameters:
name (str) – The name of the scientific raster. Default value = “MySciRaster”
alias (str) – [optional] An alias for the scientific raster.
- class plans.datasets.core.QualiRaster(name='QualiMap', dtype='uint8')[source]#
Bases:
Raster
Basic qualitative raster map dataset. todo [docstring] – examples
- __init__(name='QualiMap', dtype='uint8')[source]#
Initialize dataset.
- Parameters:
name (str) – name of map
dtype (str) – data type of raster cells, defaults to
- set_raster_metadata(metadata)[source]#
Sets the raster metadata for the object and overwrites the no-data value based on the new metadata.
- Parameters:
metadata (dict) – A dictionary containing the raster metadata.
- rebase_grid(base_raster, inplace=False)[source]#
Rebases the grid of the current object to match a base raster’s grid.
This method calls the rebase_grid method of the superclass to perform the grid rebasement using the “nearest” interpolation method.
- reclassify(dict_ids, df_new_table, talk=False)[source]#
Reclassify QualiRaster Ids in grid and table
- Parameters:
dict_ids (dict) – dictionary to map from “Old_Id” to “New_id”
df_new_table (
pandas.DataFrame
) – new table for QualiRastertalk (bool) – option for printing messages
- load_data(file_data, file_table=None, file_prj=None, id_band=1)[source]#
Load data from files to the raster object.
- Parameters:
file_data (str) – The path to the raster file.
file_table (str) – path to table file
file_prj (str) – The path to the ‘.prj’ projection file. If not provided, an attempt is made to use the same path and name as the
.asc
file with the ‘.prj’ extension.id_band (int) – Band id to read for GeoTIFF. Default value = 1
- load_table(file_table)[source]#
Load attributes dataframe from table file.
- Parameters:
file_table (str) – path to to file
- export(folder, filename=None)[source]#
Export raster sample
- Parameters:
folder (str) – path to folder,
filename (str) – string of file without extension, defaults to None
- export_table(folder, filename=None)[source]#
Export table file.
- Parameters:
folder (str) – path to folde
filename (str) – string of file without extension
- Returns:
full file name (path to and extension) string
- Return type:
str
- set_table(dataframe)[source]#
Set attributes dataframe from incoming
pandas.DataFrame
.- Parameters:
dataframe (
pandas.DataFrame
) – incoming pandas dataframe
- get_areas(inplace=False)[source]#
Get areas in map of each category in table.
- Parameters:
inplace (bool, defaults to False) – option to merge data with raster table
- Returns:
areas dataframe
- Return type:
pandas.DataFrame
- get_zonal_stats(raster_sample, merge=False, skip_count=False)[source]#
Get zonal stats from other raster map to sample.
- Parameters:
raster_sample (
datasets.Raster
) – raster map to samplemerge (bool) – option to merge data with raster table, defaults to False
skip_count (bool) – set True to skip count, defaults to False
- Returns:
dataframe of zonal stats
- Return type:
pandas.DataFrame
- get_aoi(by_value_id=None)[source]#
Get the AOI map from a specific value id (value is expected to exist in the raster) :param by_value_id: category id value :type by_value_id: int :return: AOI map :rtype:
AOI`
object
- _plot(fig, gs, specs)[source]#
Generates a plot visualizing the spatial data and its area distribution.
This method creates a figure with a map of the spatial data and a horizontal bar chart showing the percentage area of each unique class. It can aggregate smaller classes into an “others” category and displays raster metadata.
- Parameters:
fig (
matplotlib.figure.Figure
) – The matplotlib figure object.gs (
matplotlib.gridspec.GridSpec
) – The matplotlib gridspec object for arranging subplots.specs (dict) – A dictionary containing plotting specifications and options.
- Returns:
The modified matplotlib figure object with the plots.
- Return type:
matplotlib.figure.Figure
- view(show=True, return_fig=False, helper_geometry=None)[source]#
Displays or returns a visualization of the spatial data and its area distribution.
This method orchestrates the plotting process by setting up figure specifications, calling the internal plotting function (_plot), and then either displaying or saving the generated figure.
- Parameters:
show (bool) – If True, the plot is displayed. Default value = True
return_fig (bool) – If True, the matplotlib figure object is returned. Default value = False
helper_geometry (object) – [optional] An optional geometry object to overlay on the map.
- Returns:
The matplotlib figure object if return_fig is True, otherwise None.
- Return type:
matplotlib.figure.Figure
or None
- class plans.datasets.core.QualiHard(name='qualihard')[source]#
Bases:
QualiRaster
A Quali-Hard is a hard-coded qualitative map (that is, the table is pre-set) todo [docstring] – examples
- __init__(name='qualihard')[source]#
Initialize dataset.
- Parameters:
name (str) – name of map
dtype (str) – data type of raster cells, defaults to
- get_table()[source]#
Retrieves a sample DataFrame representing a classification table.
- Returns:
A DataFrame with sample classification data.
- Return type:
pandas.DataFrame
- load_data(file_data, file_prj=None, id_band=1, file_table=None)[source]#
Load data from file to the raster object.
- Parameters:
file_data (str) – The path to the raster file.
file_prj (str) – The path to the ‘.prj’ projection file. If not provided, an attempt is made to use the same path and name as the
.asc
file with the ‘.prj’ extension.id_band (int) – Band id to read for GeoTIFF. Default value = 1
- class plans.datasets.core.Zones(name='ZonesMap')[source]#
Bases:
QualiRaster
Zones map dataset is a QualiRaster designed to handle large volume of positive integer numbers (ids of zones) todo [docstring] – examples
- __init__(name='ZonesMap')[source]#
Initialize dataset.
- Parameters:
name (str) – name of map
dtype (str) – data type of raster cells, defaults to
- compute_table()[source]#
Computes an internal table summarizing unique values in the spatial data, assigns aliases, names, and sets up viewing specifications.
- set_data(grid)[source]#
Sets the spatial data for the object and recomputes the internal table.
- Parameters:
grid (
numpy.ndarray
) – The input grid data.
- load_data(asc_file, prj_file)[source]#
Load data from files to raster
- Parameters:
asc_file (str) – path to raster file
prj_file (str) – path to projection file
- get_aoi(zone_id)[source]#
Get the AOI map from a zone id
- Parameters:
zone_id (int) – number of zone ID
- Returns:
AOI map
- Return type:
AOI`
object
- view(show=True, folder='./output', filename=None, specs=None, dpi=150, fig_format='jpg')[source]#
Plot a basic pannel of raster map.
- Parameters:
show (bool) – boolean to show plot instead of saving, defaults to False
folder (str) – path to output folder, defaults to
./output
filename (str) – name of file, defaults to None
specs (dict) – specifications dictionary, defaults to None
dpi (int) – image resolution, defaults to 96
fig_format (str) – image fig_format (ex: png or jpg). Default jpg
- class plans.datasets.core.RasterCollection(name='myRasterCollection')[source]#
Bases:
Collection
The raster collection base dataset. This data strucute is designed for holding and comparing
Raster`
objects.- __init__(name='myRasterCollection')[source]#
Deploy the raster collection data structure.
- Parameters:
name (str) – name of raster collection
- load_data(name, file_data, file_prj=None, varname=None, varalias=None, units=None, datetime=None, dtype='float32', skip_grid=False)[source]#
Load a
Raster`
base_object from a raster file.- Parameters:
name (str) –
Raster.name`
name attributefile_data (str) – path to raster file
varname (str) –
Raster.varname`
variable name attribute, defaults to Nonevaralias (str) –
Raster.varalias`
variable alias attribute, defaults to Noneunits (str) –
Raster.units`
units attribute, defaults to Nonedatetime (str) –
Raster.date`
date attribute, defaults to Noneskip_grid (bool) – option for loading only the metadata
- load_folder(folder, name_pattern, talk=False, file_format='tif', parallel=False, isseries=False)[source]#
Load all rasters from a folder by following a name pattern. Datetime is expected to be at the end of name before file extension.
- Parameters:
folder (str) – path to folder
name_pattern (str) – name pattern. example map_*
talk (bool) – option for printing messages
file_format (str) – file extension.
parallel (bool) – flag to use parallel processing
- is_same_grid()[source]#
Checks if all datasets in the catalog have the same grid dimensions (number of columns and rows).
- Returns:
True if all datasets have the same grid dimensions, False otherwise.
- Return type:
bool
- reduce(reducer_func, reduction_name, extra_arg=None, skip_nan=False, talk=False)[source]#
This method reduces the collection by applying a numpy broadcasting function (example: np.mean)
- Parameters:
reducer_func (numpy function) – reducer numpy function (example: np.mean)
reduction_name (str) – name for the output raster
extra_arg (any) – extra argument for function (example: np.percentiles) - Default: None
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_mean(skip_nan=False, talk=False)[source]#
Reduce Collection to the Mean raster
- Parameters:
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_sd(skip_nan=False, talk=False)[source]#
Reduce Collection to the Standard Deviation raster
- Parameters:
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_min(skip_nan=False, talk=False)[source]#
Reduce Collection to the Min raster
- Parameters:
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_max(skip_nan=False, talk=False)[source]#
Reduce Collection to the Max raster
- Parameters:
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_sum(skip_nan=False, talk=False)[source]#
Reduce Collection to the Sum raster
- Parameters:
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_percentile(percentile, skip_nan=False, talk=False)[source]#
Reduce Collection to the Nth Percentile raster
- Parameters:
percentile (float) – Nth percentile (from 0 to 100)
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- to_median(skip_nan=False, talk=False)[source]#
Reduce Collection to the Median raster
- Parameters:
skip_nan (bool) – Option for skipping NaN values in map
talk (bool) – option for printing messages
- Returns:
raster object based on the first object found in the collection
- Return type:
- get_collection_stats()[source]#
Get basic statistics from collection.
- Returns:
statistics sample
- Return type:
pandas.DataFrame
- get_views(show=False, folder='./output', dpi=300, fig_format='jpg', talk=False, specs=None, suffix=None)[source]#
Plot all basic pannel of raster maps in collection.
- Parameters:
show (bool) – boolean to show plot instead of saving,
folder (str) – path to output folder, defaults to
./output
dpi (int) – image resolution, defaults to 96
fig_format (str) – image fig_format (ex: png or jpg). Default jpg
talk (bool) – option for print messages
- view_bboxes(colors=None, datapoints=False, show=True, folder='./output', filename=None, dpi=150, fig_format='jpg')[source]#
View Bounding Boxes of Raster collection
- Parameters:
colors (list) – list of colors for plotting. expected to be the same runsize of catalog
datapoints (bool) – option to plot datapoints as well, defaults to False
show (bool) – option to show plot instead of saving, defaults to False
folder (str) – path to output folder, defaults to
./output
filename (str) – name of file, defaults to None
dpi (int) – image resolution, defaults to 96
fig_format (str) – image fig_format (ex: png or jpg). Default jpg
- Return type:
none
- get_catalog(mode='full')[source]#
Retrieves the data catalog in different modes.
- Parameters:
mode (str) – The mode of the catalog to retrieve. Can be “full” for the complete catalog, “short” for a truncated version, or any other value to filter by a list ls. Default value = “full”
- Returns:
The requested data catalog.
- Return type:
pandas.DataFrame
- class plans.datasets.core.QualiRasterCollection(name)[source]#
Bases:
RasterCollection
The raster collection base dataset.
This data strucute is designed for holding and comparing
QualiRaster`
objects.
- class plans.datasets.core.RasterSeries(name, varname, varalias, units, dtype='float32')[source]#
Bases:
RasterCollection
A
RasterCollection`
where datetime matters and all maps in collections are expected to be the same variable, same projection and same grid.- __init__(name, varname, varalias, units, dtype='float32')[source]#
Deploy RasterSeries
- Parameters:
name (str) –
RasterSeries.name`
name attributevarname (str) –
Raster.varname`
variable name attribute, defaults to Nonevaralias (str) –
Raster.varalias`
variable alias attribute, defaults to Noneunits (str) –
Raster.units`
units attribute, defaults to None
- load_data(name, datetime, file_data, prj_file=None, dtype='float32', skip_grid=False)[source]#
Load a
Raster`
object from raster file.- Parameters:
name (str) –
Raster.name`
name attributedatetime (str) –
Raster.date`
date attribute, defaults to Nonefile_data (str) – path to raster file
prj_file (str) – path to projection file
skip_grid (bool) – option for loading only the metadata
- load_folder(folder, name_pattern, talk=False, file_format='tif', parallel=False)[source]#
Load all rasters from a folder by following a name pattern. Datetime is expected to be at the end of name before file extension.
- Parameters:
folder (str) – path to folder
name_pattern (str) – name pattern. example map_*
talk (bool) – option for printing messages
file_format (str) – file extension.
parallel (bool) – flag to use parallel processing
- apply_aoi_masks(grid_aoi, inplace=False)[source]#
Batch method to apply AOI mask over all maps in collection
- Parameters:
grid_aoi (
numpy.ndarray
) – aoi gridinplace (bool) – overwrite the main grid if True, defaults to False
- rebase_grids(base_raster, talk=False)[source]#
Batch method for rebase all maps in collection
- Parameters:
base_raster (
datasets.Raster
) – base raster for rebasingtalk (bool) – option for print messages
- get_series_stats()[source]#
Get the raster series statistics
- Returns:
dataframe of raster series statistics
- Return type:
pandas.DataFrame
- view_series_stats(statistic='mean', folder='./output', filename=None, specs=None, show=True, dpi=150, fig_format='jpg')[source]#
View raster series statistics
- Parameters:
statistic (str) – statistc to view. Default mean
show (bool) – option to show plot instead of saving, defaults to False
folder (str) – path to output folder, defaults to
./output
filename (str) – name of file, defaults to None
specs (dict) – specifications dictionary, defaults to None
dpi (int) – image resolution, defaults to 96
fig_format (str) – image fig_format (ex: png or jpg). Default jpg
- class plans.datasets.core.QualiRasterSeries(name, varname, varalias, dtype='uint8')[source]#
Bases:
RasterSeries
A
RasterSeries
where date matters and all maps in collections are expected to beQualiRaster`
with the same variable, same projection and same grid.- __init__(name, varname, varalias, dtype='uint8')[source]#
Deploy Qualitative Raster Series
- Parameters:
name (str) –
RasterSeries.name`
name attributevarname (str) –
Raster.varname
variable name attribute, defaults to Nonevaralias (str) –
Raster.varalias
variable alias attribute, defaults to None
- update_table(clear=True)[source]#
Update series table (attributes)
- Parameters:
clear (bool) – option for clear table from unfound values. default: True
- append(raster)[source]#
Append a
Raster
base_object to collection. Pre-existing objects with the sameRaster.name
attribute are replaced
- load_data(name, datetime, file_data, prj_file=None, table_file=None)[source]#
Load a
QualiRaster
base_object from raster file.- Parameters:
name (str) –
Raster.name
name attributedatetime (str) –
Raster.date
date attributefile_data (str) – path to raster file
prj_file (str) – path to projection file
table_file (str) – path to
.txt
table file
- load_folder(folder, file_table, name_pattern, talk=False, file_format='tif', parallel=False)[source]#
Load all rasters from a folder by following a name pattern. Datetime is expected to be at the end of name before file extension.
- Parameters:
folder (str) – path to folder
file_table (str) – path to file table
name_pattern (str) – name pattern. example map_*
talk (bool) – option for printing messages
file_format (str) – file extension.
parallel (bool) – flag to use parallel processing
- get_series_areas()[source]#
Get areas prevalance for all series
- Returns:
dataframe of series areas
- Return type:
pandas.DataFrame
- static view_series_areas(df_table, df_areas, specs=None, show=True, export_areas=True, folder='./output', filename=None, dpi=300, fig_format='jpg')[source]#
View series areas
- Parameters:
specs (dict) – specifications dictionary, defaults to None
show (bool) – option to show plot instead of saving, defaults to False
folder (str) – path to output folder, defaults to
./output
filename (str) – name of file, defaults to None
dpi (int) – image resolution, defaults to 96
fig_format (str) – image fig_format (ex: png or jpg). Default jpg